Remarks on the Commutativity of Rings
نویسنده
چکیده
Introduction. A celebrated theorem of N. Jacobson [7] asserts that if (1) x*(x) =x for every x in a ring R, where n(x) is an integer greater than one, then R is commutative. In a recent paper [2], I. N. Herstein has shown that it is enough to require that (1) holds for those x in R which are commutators: x= [y, z]=yz — zy of two elements of R. The purpose of this note is to show that if R has no nonzero nilpotent ideals, we may restrict x in (1) to iterated commutators of any fixed degree. We also obtain a weaker result for arbitrary rings. An important tool in the proof of our results is a lemma which generalizes a result of Kaplansky [4] to the effect that the only elements of a primitive ring which commute with all commutators are in the center. This tool is also useful in extending and complementing some results of Divinsky [l] on commuting isomorphisms of simple rings. These extensions include some recent results of Posner [9] on derivations in prime rings. As a final remark, we indicate an exceedingly brief proof of Herstein's result [3 ] on Jordan derivations in prime rings. Although the proof of our first result follows that of Herstein very closely, we present a self-contained account for the convenience of the reader.
منابع مشابه
A COMMUTATIVITY CONDITION FOR RINGS
In this paper, we use the structure theory to prove an analog to a well-known theorem of Herstein as follows: Let R be a ring with center C such that for all x,y ? R either [x,y]= 0 or x-x [x,y]? C for some non negative integer n= n(x,y) dependingon x and y. Then R is commutative.
متن کاملSOME REMARKS ON ALMOST UNISERIAL RINGS AND MODULES
In this paper we study almost uniserial rings and modules. An R−module M is called almost uniserial if any two nonisomorphic submodules are linearly ordered by inclusion. A ring R is an almost left uniserial ring if R_R is almost uniserial. We give some necessary and sufficient condition for an Artinian ring to be almost left uniserial.
متن کاملSome commutativity theorems for $*$-prime rings with $(sigma,tau)$-derivation
Let $R$ be a $*$-prime ring with center $Z(R)$, $d$ a non-zero $(sigma,tau)$-derivation of $R$ with associated automorphisms $sigma$ and $tau$ of $R$, such that $sigma$, $tau$ and $d$ commute with $'*'$. Suppose that $U$ is an ideal of $R$ such that $U^*=U$, and $C_{sigma,tau}={cin R~|~csigma(x)=tau(x)c~mbox{for~all}~xin R}.$ In the present paper, it is shown that if charac...
متن کاملOn centralizers of prime rings with involution
Let $R$ be a ring with involution $*$. An additive mapping $T:Rto R$ is called a left(respectively right) centralizer if $T(xy)=T(x)y$ (respectively $T(xy)=xT(y)$) for all $x,yin R$. The purpose of this paper is to examine the commutativity of prime rings with involution satisfying certain identities involving left centralizers.
متن کاملA GENERALIZATION OF A JACOBSON’S COMMUTATIVITY THEOREM
In this paper we study the structure and the commutativity of a ring R, in which for each x,y ? R, there exist two integers depending on x,y such that [x,y]k equals x n or y n.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010